
2. B.S. Rinkevichyus, Laser Anemometry [in Russian], /~nergiya, Moscow (1978). 

3. Yu. M. Klimkov, Fundamentals of Laser Optoelectronic Device Design [in Russian], Soy. Radio, Mos- 
cow (i 978). 

4. L. Frenks, Signal Theory [in Russian], Soy. Radio (1974). 

5. N.S. Shestov, Detection of Optical Signals against a Random Interference Background [in Russian], 
Soy. Radio, Moscow (1967). 

6. A.Z. Rozenshtein and K. R. Samuel', "Optoelectronic system for gas-solid particle type flow diagnos- 
tics,' in: Turbulent Two-Phase Flows [in Russian], Izd. Akad. Nauk Est. SSR, Tallin (1979). 

7. M.K. Laats and A. S. Mul'gi, "Experimental study of kinematics of finely dispersed tube flows," in: 
Turbulent Two-Phase Flows [in Russian], Izd. Akad. Nauk Est. SSR, Tallin (1979). 

8. O.I. Navoznov, A. A. Pavel'ev, A. S. Mul'gi, and M. K. Laats, "Effect of initial slippage on impurity 
scattering in a two-phase jet," in: Turbulent Two-Phase Flows iin Russian], Izd. Akad. Nauk Fst. SSR, 
Tallin (1979). 

FORCED OSCILLATIONS IN A 

FLUIDIZED BED 

Yu. A. Buevich 

HOMOGENEOUSLY 

UDC 532.545 

The c h a r a c t e r i s t i c s  of the s t eady - s t a t e  osci l lat ions in a bed of finite height a re  considered;  the 
f requency dependence of the ampli tude is osc i l l a to ry ,  which enables one to identify d i s c r e t e  
s p e c t r a  of resonant  and ant i resonant  f requencies .  

One of the promising ways of accelerating transfer processes in fluidized beds is to superimpose an 
oscillation by means of pulsations in the pressure or flow rate of the fluidizing medium, or oscillations in the 
distribution grid, etc. In some cases, this simplifies the fluidization of finely divided materials, in which 
clumping is characteristic, and it also enables one to expand the existence limits for homogeneous fluidization. 

We therefore have to consider the distribution of the amplitude of the oscillations in the porosity, phase velo- 
cities, and so on over the volume of the layer and the relationship of these to the physical and other parameters 
of the system and to the external perturbation. 

The problem has been considered on several occasions for unbounded beds in relation to the stability of 
the homogeneous fluidized state (see [1-5] and reviews in [6, 7]). These studies imply instability in small 
perturbations, and the stabilizing effect of the internal stresses in the dispersed phase are insufficient to pro- 
vide stability at values of the parameters usually employed in fluidization [4, 5]. As the perturbations propa- 
gate, the nonlinear interactions between the perturbations differing in wavelength become important, which 
results in a generation of waves of considerable amplitude [8, 9], with a subsequent possible formation of 
bubbles and other discontinuities and the establishment of inhomogeneous fluidization. 

To a considerable extent, these conclusions were drawn because no allowance was made for the finite 
time spent by a perturbation in the bed or the stabilizing effect of the upper boundary. This time is finite in 

a bed of finite height and sometimes is insufficient for the perturbation amplitude to increase substantially 
(particularly in the fluidization of small particles by liquids), while the upper boundary in principle can give 
rise to a system of reflected waves, which interfere with the initial ones [i0, ii]. 

Here we consider the propagation of forced weak perturbations in a bounded layer of small particles 

fluidized by a gas. We neglect inertia, gravity, and viscous stresses in the gas, while the hydraulic resist- 
ance of the bed is considered a linear function of the infiltration speed. These assumptions simplify the ex- 
pressions considerably but do not affect the essentials of the problem. 

Linearized Equations. We consider the fluidized bed in a continuum approximation and write the equa- 
tions for conservation of mass and momentum of the phases in the form 

92_P at ~div(pw)~0' ap __div(ev)~0, d~p dw ~f~-d~pg, --Vp~ f~0, e---- 1--p. (i) 
Ot dt 

Urals University, Sverdlovsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. i, pp. 
61-69, July, 1981. Original article submitted May 13, 1980. 
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For f we use a theory [12, 13] in which this force is represented as follows for a steady-state flow in a 

two-phase system with small particles: 

f = 9 [I3K (P) (u - -  v) + dgl, u = ev q- pw, d = edo + 9d,. (2) 

H e r e  the  f i r s t  t e r m  d e s c r i b e s  the  h y d r a u l i c  r e s i s t a n c e  e x e r t e d  by  the  p a r t i c l e s  with r e s p e c t  to  the  gas  f low,  
whi le  the  second  d e s c r i b e s  the  e f f ec t i ve  u p t h r u s t  ( A r c h i m e d e a n  fo r c e ) .  A d i f f e r e n c e  f r o m  m o s t  e a r l i e r  s t u -  
d i e s  [7] and c e r t a i n  un jus t i f i ed  r e c o m m e n d a t i o n s  b a s e d  on a p u r e l y  p h e n o m e n o l o g i c a l  a p p r o a c h  [14] is tha t  in 
(2) i t  is  not n e c e s s a r y  to i n t r o d u c e  a t e r m  con ta in ing  the p r e s s u r e  g r a d i e n t ;  h e r e  the  A r c h i m e d e a n  f o r c e  is  
d e t e r m i n e d  by  the d e n s i t y  of  the  m i x t u r e  as  a whole ,  not s i m p l y  by  the gas  d e n s i t y .  F u r t h e r ,  /3 = 9p o/2a 2 fo r  
the  flow a round  the  ind iv idua l  p a r t i c l e s  a t  low Reyno lds  n u m b e r s ;  the  m o n o t o n i c a l l y  i n c r e a s i n g  funct ion  K(p) 
d e s c r i b e s  the  e f fec t  of h i n d r a n c e  to the  flow a round  the p a r t i c l e s ,  and K(0) = 1. Th is  funct ion  has  been  e s t i -  
ma ted  [15] fo r  m o d e r a t e l y  c o n c e n t r a t e d  s y s t e m :  K(p) = (1 -5p /2 ) -1 ,  and n u m e r i c a l  c a l c u l a t i o n s  of the  type  of  
those  of [16] a r e  r e q u i r e d  to  d e t e r m i n e  th i s  fo r  p > 0 .2 -0 .3 ,  so  i t  m a y  be  m o r e  c onve n i e n t  to  u se  one of the  
e m p i r i c a l  r e l a t i o n s h i p s  l i s t e d  in the  r e v i e w  of  [6]. 

I t c a n  be shown f r o m  the method  of [12, 13],  and a l s o  is  c l e a r  f r o m  g e n e r a l  p h y s i c a l  c o n s i d e r a t i o n s ,  
tha t  a l l o w a n c e  for  the  i n e r t i a l  f o r c e  u n d e r  n o n s t a t i o n a r y  cond i t ions  l e a d s  to  the  r e p l a c e m e n t  of g by g - d w / d t ;  
f u r t h e r ,  d o << d l ,  which  e n a b l e s  us in p a r t i c u l a r  to n e g l e c t  the  a c c e l e r a t i o n  of the  ad jo in t  m a s s  of g a s ,  s o  
i n s t ead  of (2) we have  

f = d~p [ea (9) (v - -  w) - -  p (g - -  dwldt)], a (9) = ~ldO If (9). (3) 

We direct the x axis in the opposite sense to the g vector and give the solution of (i) describing the 

steady-state homogeneous condition in the layer: 

vo = g/ao, Wo = O, Po = d,oog (ho--  x), ao ~--- ~z (Po). (4) 

As pressure origin we take the pressure at the upper boundary of the bed x = h0, while the x coordinate is 
reckoned from the distribution grid. 

A perturbed state of the bed differing slightly from homogeneous is described by introducing qugntities 

of the type q~ = ~0 + q~f, where by ~ we understand any of the quantities p (or e), p, v, and w. We have a sys- 

tem of linear equations for the prime variables from (i): 

(o__+ o ao' 
%---~' + f,,, -~ o, Vo ~ - -  ~o - o, 
Ot Ox k Ot Ox 

aw' , , dcz 
= % (v' - -  w') + ~oVo~', c*o ~ Ot P=Oo' 

Op' d, [poC*o (v' - -  w') + (~o + pCZo) vop']. 
Ox 

( 5 )  

We c o n s i d e r  a m o n o c h r o m a t i c  wave  with f r e q u e n c y  w and a s s u m e  tha t  ~p' = ~exp  (kx + iwt) in a c c o r d a n c e  
with the  s t a n d a r d  method .  Then  f r o m  (5) we ge t  a s y s t e m  of l i n e a r  a l g e b r a i c  equa t ions  fo r  the  a m p l i t u d e s  of 
the  c o n c e n t r a t i o n ,  p r e s s u r e ,  and v e l o c i t y  o s c i l l a t i o n s ,  whose  c h a r a c t e r i s t i c  equa t ion  has  the  r o o t s  

)h ~ )~2 = 0, ~3 = ~ = e0c0 ~ -  iaoo~ (6) 

Oo (ao + ~G) Vo 

The general solution to (5) is written as 

P' = (R1-1- R2x + R3e ~)  e z~t, p' = (Pi + P~x + P3e x~) e i~t, 

v' = (G + Gx  + V3e ~) e ~ot, w' = (W~ + W~x + W~e ~) d ~ , 

where it follows from (5) that 

R I = R 2 = 0 ,  V 2 = W 2 = 0 ,  V t -  fcoq-ao l~'i, 
~0 

R3 Po)~ W3, V3 90 ico+ vok W3, 
ico eo ico 

(7) 
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P2 = - -  idipomWi, 

ia.o~O + (no + polar) vo~ Wa, 
Pa = djpo iSoO)~ 

(8) 

and X is defined in (6). Equations (7) and (8) allow us to express the solution to (5) for a monochromatic wave 

completely apart from the three constants WI, W3, and Pl, which have to be determined from the boundary 

conditions. 

The system allows only Of bending or traveling waves propagating upwards with a velocity of the order 
of v 0, which is independent of frequency; the buildup increment is proportional to the square of the frequency. 
!t is obvious that the system does not allow for waves reflected from the upper boundary of the type examined 
in [11]. 

Use  of B o u n d a r y  Cond i t ions .  We f i r s t  c o n s i d e r  the b o u n d a r y  cond i t ions  tha t  m u s t  be  i m p o s e d  at  the  
u p p e r  s u r f a c e  of the bed no m a t t e r  what  the  s i t u a t i o n  at  the  l o w e r  b o u n d a r y .  In the p r e s e n t  s y s t e m  of  s y m b o l s ,  
we have  h = h 0 + h '  = h 0 + He i ~ t  fo r  the he igh t  of the  bed .  C l e a r l y ,  the  p a r t i c l e  v e l o c i t y  at  the  u p p e r  b o u n d a r y  
mus t  c o i n c i d e  with  d h / d t  and t h e r e f o r e  we get  the  fo l lowing  k i n e m a t i c  cond i t ion  f r o m  (7) and (8): 

W~ + W3 exp Q&0) = io~H. (9) 

I f  we n e g l e c t  gas  i n e r t i a ,  the  p r e s s u r e  above  a bed should  be  independen t  of  the  o s c i l l a t i o n s  wi th in  it .  
T h e r e f o r e ,  up to t e r m s  of the  f i r s t  o r d e r  in s m a l l  p e r t u r b a t i o n s  we ge t  

Pi + P~ho + P3 exp 0~h0) = dipogH (10) 

(he re  we have  u sed  the e x p r e s s i o n  fo r  the u n p e r t u r b e d  p r e s s u r e  in (4)). 

The e x p r e s s i o n  fo r  the  a m p l i t u d e  H of the o s c i l l a t i o n s  at  the  u p p e r  b o u n d a r y  is  r e a d i l y  ob ta ined  f r o m  the 
cond i t i on  for  c o n s e r v a t i o n  of  the  s u s p e n d e d  m a t e r i a l  in the  bed ,  on which  b a s i s  the  i n t e g r a l  of p with r e s p e c t  

to  dx  with l i m i t s  z e r o  and h0 should  be P0h0. Then  f r o m  (7) and (8) we get  with the  f o r m e r  a c c u r a c y  tha t  

1 
H - -  

po% 
[exp O~ho) - -  1] Rz = I f _  [exp (kh0) - -  i I W3. 

t O  

Equations (9)-(11) enable us to express two of the unknown constants in terms of one other. 

as the unknown quantity and get 

Wl = - -  Wa, P, --  d,Po [% (~oVo - -  he (o2) ~ " (iCZoCO + Oo (% + %r re%) exp (~ho)] 7/3. 
i%m~, 

( i i )  

We take W 3 

(12) 

The c o n s t a n t  W 3 m u s t  be d e t e r m i n e d  f r o m  an add i t i ona l  b o u n d a r y  cond i t ion ,  whose  f o r m  is d e p e n d e n t  
on the  d e t a i l s  of the p r o b l e m .  H e r e  we g ive  b o u n d a r y  cond i t ions  c o r r e s p o n d i n g  to  c a s e s  w h e r e  the o s c i l l a t i o n s  
a r e  s e t  up by: 1) f l o w - r a t e  p u l s a t i o n s ,  2) p u l s a t i o n s  in the  gas  p r e s s u r e  in the  c a v i t y  u n d e r  the  d i s t r i b u t i o n  
g r i d ,  and 3) g r i d  v i b r a t i o n s .  In v iew of the  l i n e a r i t y  of the  p r o b l e m ,  i t  is  su f f i c i en t  to c o n s i d e r  only  h a r m o n i c  
p u l s a t i o n s .  

Let  the  gas  f low th rough  the  g r id  in the  f i r s t  c a s e  be q = q0 + Q e iwt ,  w h e r e  q0 = a0v0 and Q is a g iven  s m a l l  
quan t i ty .  On the  b a s i s  of  the  above  equa t ions  and the  de f in i t i on  of the  f low q = ev we ge t  wi th  the  above  a c c u r a c y  
that  

- -  v0Ra § ~0 (Vi § Va) = Q. (13) 

In the  s econd  c a s e  l e t  the  p r e s s u r e  u n d e r  the g r id  be p* = P0* + p * e i w t ,  with P0* = dlP0gh0 + kq0 in the  
u n p e r t u r b e d  s t e a d y  s t a t e  (he re  we have  used  (4) and a s s u m e d  tha t  the h y d r a u l i c  r e s i s t a n c e  of the  g r id  is  l i n e -  
a r l y  r e l a t e d  to the gas  f low r a t e ) .  In the  p e r t u r b e d  s t a t e  we a g a i n  have  q = q0 + Q el~ w h e r e  Qe  ic~ is  r e a d i l y  
d e t e r m i n e d  as  a r e s u l t  f r o m  d i v i d i n g  the  p r e s s u r e  d r o p  at  the  g r id  by k. A s i m p l e  c a l c u l a t i o n  g ives  the boun-  
d a r y  cond i t ion  as  

1 ( 1 4 )  
- -  voR3 + % (V~ + V3) = - ~  (P*  - -  P ,  - Pa)- 
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Finally, let the grid vibrate in such a way that the coordinate is x = Aekct, where the amplitude A is 
sufficiently small for the motion not to affect the gas pressure under the grid, i.e., p* = 130"; the pressure 
drop across the grid is clearly k(q-iwAe i~ and we equate this to the difference of P0* and the instantaneous 

value of the pressure at the lower boundary of the bed to get 

1 (icokA - -  P~ - -  P~). (15) - -  voR~ + ~o (Vi + V3) = -k- 

Therefore, the mathematical formulations in the second and third cases are of the same type; the effects of 
grid vibration on the oscillatory process may thus be considered by examining the system with an immobile 
grid with pressure pulsations underneath with the complex amplitude P*= iwkA. 

It will be incorrect to formulate the boundary conditions for the third case by equating the velocity of the 
particles at the lower boundary to the velocity of the grid ixAei~t; in fact, the rising grid results in a densely 
packed layer of particles above it, while a descending grid produces a gas layer free from particles; in both 
cases the situation is clearly not described by (5). 

Using (S) and (12) we get the following expressions for W 3 in the case of flow-rate pulsations [condition 
(13)[: 

is,,co "1-1, W 3 = - - ( 2  1 +  (16) 
�9 G~O J 

and for pulsations in the pressure ]condition (14)]: 

{( ) } W3 = - -  P* k 1 + isoco + dj__s [So (~ZoVo - -  hoco) ~ -7- (i~oco +(~o + %c*; ) voX) (exp (~ho) - -  1) -1 
�9 ao i~oco~ 

(17) 

In the case of grid vibrations ]condition (15)], (17) applies, but with F* replaced by iwkA. For k-~oo, this 
formula becomes (16), where i~A appears instead of Q. 

These equations completely close the solution to (7) for these problems. Some simple but somewhat 
cumbersome calculations enable us to examine the dependence of the amplitudes and phase angles of the os- 
cillations of the various quantities at various levels in the bed in relation to the various physical parameters. 
This is carried through here for the first case, where the oscillations are excited by flow-rate pulsations. 

Example. Excitation of oscillations by flow-rate fluctuations. We introduce the dimensionless para- 
meters 

~0h0 v : - - ,  •  s --  , 7 (18) 
So ~o ' vo g p0(l + ~o• 

The  v a l u e s  of ~4 and  T a r e  d e p e n d e n t  on the  f o r m  of K(p). If we u s e  E r g a n ' s  f o r m u l a  fo r  s m a l l  p a r t i c l e s  to  
d e t e r m i n e  t h i s ,  t h e n  a ~ e -2, i . e . ,  ~ = 2 / %  and 7 = ~/3p0,  and  fo r  a ~ 10 -2 c m  the  c h a r a c t e r i s t i c  v a l u e s  a r e  
o~ 0 ~ 102-103 s e c  -1 and a ~ T ~ 102-104. 

The  s i m p l e s t  f o r m  is t a k e n  b y  t h e  wave  for  the  v o l u m e  c o n c e n t r a t i o n  of the  d i s p e r s e d  phase  (or  p o r o s i t y ) .  
F r o m  (7), (8), and (16) we h a v e  

p, 7P0 Q exp [e0~,,~,2~ + i (cot - -  7v~)], ~ = x , 
aoho ~ ho (19) 

wh ich  is a wave  p r o p a g a t i n g  u p w a r d s  wi th  an  e x p o n e n t i a l l y  i n c r e a s i n g  a m p l i t u d e .  T h e  l i n e a r  t h e o r y  c l e a r l y  
a p p l i e s  fo r  

Q exp (%7v 2) (< aoho/7 N g/ao,  (20) 

wh ich  i m p o s e s  a c o n s t r a i n t  on  the  a m p l i t u d e  of the  f l o w - r a t e  p u l s a t i o n s  and the  i n c r e m e n t  in  t he  a m p l i t u d e .  
The  l a t t e r  i s  s m a l l  f o r  a f a i r l y  wide  c l a s s  of s y s t e m s ,  s o  the  a m p l i t u d e  i n c r e a s e s  l i n e a r l y  wi th  h e i g h t  (a q u a n -  
t i t y  a n a l o g o u s  to th i s  i n c r e m e n t  was  u s e d  i n  [11] as  a sn~al l  p a r a n ~ e t e r ) .  C o n d i t i o n  (20) t hus  l e a d s  to the  
i n e q u a l i t y  

Q KK g/~zo, "~<~(') = 1 / V ~  ~ (1/So) ] /g /ho .  (21) 
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It is not in fact correct to simulate the phases in a fluidized bed as two mutually penetrating and inter- 

acting continuous media, which leads to (i), if the linear scale for substantial variation in the hydrodynamic 

variables substantially exceeds the particle size. This imposes a further constraint on the dimensionless pul- 
sation frequency: 

v ~(  v(2) = (1/7)(ho/a)" (22) 

If this inequa l i ty  is v io la ted ,  i . e . ,  , ~ v ( 2 ) ,  one cannot  use  (5), which follows f rom (1), t o d e s c r i b e t h e  o s c i l l a -  
t ions .  In that  c a se  it is n e c e s s a r y  to c o n s i d e r  the i n t e r a c t i o n  of the indiv idual  p a r t i c l e s  with a s u b s t a n t i a l l y  
inhomogeneous  gas flow. The s t r eng th  of this i n t e r a c t i o n  and the r e l a t ed  e n e r g y  d i s s i p a t i o n  i n c r e a s e  sha rp ly  
as the l i n e a r  s ca l e  of the flow is r educed ,  i . e . ,  in the p r e s e n t  ca se  with i n c r e a s e  in the pu l sa t ion  f r equency ,  

as occurs  in the i n t e r a c t i o n  of p a r t i c l e s  with s m a l l - s c a l e  t u r b u l e n t  eddies  [17]. These  h i g h - f r e q u e n c y  o s c i l l a -  
t ions  should die out r ap id ly  as the height  above the gr id  i n c r e a s e s ,  and t he r e f o r e  they need not be examined .  
F o r  h 0 ~ 10 cm,  a ~ 10 -2 cm and 7 ~ 103 we have ,(t)  ~ 10-1.5, ,(2) ~ 1, which c o r r e s p o n d s  to the f r equenc ie s  
~(~) ~ 10 Hz,  w(2) ~ 102.5 Hz (we have a s s u m e d  that  a0 ~ 102"5 sec-1) �9 

F r o m  (H) and (16) we have for  the complex  o sc i l l a t i on  ampl i tude  of the upper  bounda ry  that 

H = iQ - [exp (7v (soy - -  i)) ~ 1]. (23) 
~o (1 + ieov) 

The real amplitude 

F ~ , -  I//I 1 Q/ao - v (1 -+- 8~vz) '/2 [exp (2eoyV 2) + 1 - -  2 exp (eoyV 2) cos(yv)l 1./2 (24) 

is an oscillatory function of the parameter T v, which is modulated by the functions 

Fh+._ l 
v (1 ~- e2ov~) I /e  [exp (eoyV z) • 1]. (25) 

Figure I shows the dependence on the dimensionless frequency of the quantities of (24) and (25); F h Is 

clearly an oscillatory function of the dimensionless frequency whose amplitude decreases as the frequency 

rises. There are discrete spectra of resonant and antiresonant frequencies, which correspond to compara- 

tively fiat maxima and sharper minima. In the frequency range of main interest, the relationship differs 

little from harmonic, i.e., that obtained with exp (a0Tu 2) ~ i; in particular, we have approximately what fol- 

lows for the frequencies providing the maxima and minima in the amplitudes at the upper boundary: 

vma x ~ (2n + 1) ~/7, Vmin ~ 2nrcly, n = O, 1 . . . .  (26) 

For the real amplitude of oscillation of the particle velocity in the bed we have 

Fw IWI _ _  1 
= O - -  ( l~e~v2)l/2 [exp( 2~oyv2~)~l-2exp(eOT~2~)c~ (27) 

Figure 2 shows the u dependence for this quantity for various ~, i.e., for various levels within the bed; rela- 

tionships differ little from the corresponding harmonic ones. At each level there are discrete sets of fre- 

quencies for which the amplitudes are maximal and minimal. The intervals between the different Uma x and 

Umin decrease in inverse proportion to ~ as the height above the bed increases. The ~ dependence of F w for 

various u is analogous to that of the relationship shown in Fig. 2. 

It is also simple to consider the oscillations in phase and pressure. For u sufficiently small (such that 

one can assume exp (eoTU 2) ~ i) we have from the above that 

= - -  1 - -  + 2 Po 1 -  7 cos(Try) ' (28) 
Q \ eo / go a 

and also that 

IPl ~ ] / 2  [l--~(l--~)(l--cos(?v))--~cos(?v(l--~))--(l--$)cos(?v~)]. (29) 
F p -  diPoaoQh ~ ~v 

In (29), we have used the following quantity instead of the dimensionless coordinate ~ = x/h 0 used in the other 

equations: 
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Fig. I. Dependence of  the dimensionless real amplitude of the oscillations of the 
upper boundary on the dimensionless frequency for 7 = 103 and e 0 = 0.5; the bro- 
ken lines show the modulating function. 

Fig. 2. Dimensionless real oscillation amplitude in particle velocity at various 
levels in the bed (the numbers at the curve s give the values of ~ = x/h 0) as func- 
tions of the dimensionless frequency. 

) h--~- ho ei~ ' ( 3 0 )  

which enables us to give the formula a form symmetrical with respect to the middle level ~ = 0.5. 

The relationships of F v and Fp to ~ and u are very similar to the corresponding ones for F w. There 
are also characteristic resonant and antiresonant frequencies, which coincide with those for the velocity fluc- 
tuations. The bed contains systems of standing and traveling waves that are simulated by certain standing 

waves in which the positions of the nodes and antinodes are determined by Tp. 

The mechanism whereby these standing waves are produced is quite different from that indicated by the 
analysis of [ii], where the upper boundary was considered as a surface capable of reflecting incident waves. 
The above theory indicates that reflected waves do not occur at all in the system, and the stabilizing action of 
the upper boundary is simply due to degeneration of the pressure fluctuations there. The latter can be seen 

for example from (29). 

It has been shown by experiment [i0] that there is a frequency at which the pressure fluctuations are the 
strongest at a certain height above the grid. However, the theory of [i0] proposed to explain this phenomenon 
was based on representing the fluidized bed as a homogeneous elastic medium, which is inadequate. Also, 
there is not a single frequency providing the maximum amplitude in the gas pressure and in the other hydro- 
dynamic quantities but an infinite set of frequencies (here it must be remembered that the theory developed here 
ceases to be correct at high frequencies). 

These results have applied significance. In principle, it is possible to select the frequency of the exter- 
nal force in fluctuations and the parameters of the bed to provide the maximum pulsation intensity at different 
parts of the bed with minimum fluctuations in the height. Therefore,~ future work in this area would appear to 
be very promising, particularly detailed study of the oscillations produced by other means (e. g., by pressure 
oscillation or grid vibrations), with transfer of the results to beds fluidized by liquids (which as a rule are in 
fact homogeneous), together with experimental refinement of the theoretical relationships between the optimum 
frequencies for accelerating the transfer processes and the physical and other parameters of the bed. 

NOTATION 

A, grid vibration amplitude; a, particle radius; do, dl, d, gas, particle and mixture densities; F, di- 
mensionless actual fluctuation amplitude; f, interphase interaction force; g, gravitational acceleration; H, 
amplitude of the upper bed boundary fluctuations; h, bed height; K, function for constrained flow around par- 
ticles; k, grid drag coefficient; p, pressure; q, gas flow rate; t, time; u, v, w, mixture, gas and particle 
velocities; x, longitudinal coordinate; Pi, Ri, Vi, Wi, constants in (7); ~, fl, quantities introduced into (3); 
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~ porosity; k, root of the characteristic equation; ~0, gas viscosity; v, dimensionless frequency; ~, dimen- 
sionless coordinate; p, volume particle concentration; co, frequency; 7, ~, a, parameters introduced into (18). 
Indices: 0, undisturbed state of the bed; ', pulsations of hydrodynamic quantities and differentiation of c~ with 
respect to p ; *, state under the gas-distrib.uting grid. 

LITERATURE CITED 

I. R. Jackson, "The mechanics of fluidized beds," Trans. Inst. Chem. Eng., Part I, 4__i_i, 13-20 (1963). 
2. R.L. Pigiord and T. Baron, "Hydrodynamic stability of a fluidized bed," Ind. Eng. Chem. Fund., 4, 

81-87 (1965). 
3. J.D. Murray, "On the mathematics of fluidization, " Part I, J. Fluid Mech., 2___1, 465-476 (1965). 
4. T.B. Anderson and R. Jackson, "Fluid mechanical description of fluidized beds.' Stability of a state of 

uniform fluidization," Ind. Eng. Chem. Fund., 7, 12-21 (1968). 
5. Yu. A. Buyevich, "Statistical hydromechanics of disperse systems," J. Fluid Mech., 5_6_6, 313-336 (1972). 
6. M.E. Agrov and O. M. Todes, Hydraulic and Internal Principles of the Operation of Equipment with 

Stationary and Fluidized Beds [in Russian], Khimiya, Leningrad (1968). 
7. R. Jackson, "Theoretical mechanics of fluidization, H in: Fluidization [Russian translation], Khimiya, 

Moscow (1974), pp. 74-121. 
8. T.B. Anderson and R. Jackson, "A fluid mechanical description of fluidized beds. Comparison of the 

theory and experiments," Ind. Eng. Chem. Fund., 8_, 137-144 (1969). 
9. J. Verloop and P. M. Heertjes, "Periodic pressure fluctuations in fluidized beds," Chem. Eng. Sci., 

2_99, 1035-1042 (1974). 
i0. A.I. Tamarin and G. I. Kovenskii, "Propagation of static-pressure oscillations in a fluidized bed, " 

Teor. Osn. Khim. Tekhnol., 6, 83 (1972). 
ii. V.P. Golo and V. P. Myasnimov, "Dispersion phenomena in a fluidized bed," Prikl. Mat. Meldl., 3_99, 

747 (1975). 
12. Yu. A. Buyevich, "Kontinuumsmechanik konzentrierter Suspensionen," Z. Angew. Math. Mech., 566, 

379-388 (1976). 
13. Yu. A. Buyevich and I. N. Shchelchkova, "Flow of dense suspensions," Progr. Aerospace Sci., 188, 

121-150 (1978). 
14. R.I. Nigmatullin, Principles of the Mechanics of Heterogenous Media [in Russian], Nauka, Moscow 

(1978). 
15. Yu. A. Buevieh and I. N. Shehelchkova, "Rheological properties of homogeneous finely divided suspen- 

sions: steady-state flows," Inzh.-Fiz. Zh., 3_33, 872-879 (1977). 
16. B.S. Endler, "The effective viscosity and thermal conductivity of a dispersed medium, ' Inzh. Fiz. Zh., 

3__99, ii0 (1979). 
17. J.O. Hinze, "Turbulent fluid and particle interaction," in: Progress in Heat and Mass Transfer, Vol. 6, 

Pergamon Press, New York-London (1972), pp. 433-452. 

METHOD OF INTERPOLATING DATA IN DETERMINING 

THE RHEOLOGICAL PARAMETERS OF A LIQUID 

A.  B.  G o l o v a n c h i k o v  a n d  N. V. T y a b i n  UDC 541.148:66.011 

The least-squares method is applied to determine the parameters in the rheologieal equation of 
state for the liquid over wide ranges in the velocity gradient and tangential stress. 

The theological parameters of liquids have major effects on the hydromechanical, thermal, and mass- 
transfer processes [i], and therefore correct determination of the theological equation of state for a liquid is 
a basic problem in rheology [2, 3]. 

The ranges in strain rate and stress for a given object frequently constitute 4-6 orders of magnitude, so 
mathematical description of experimental values usually involves piecewise approximation for individual ranges in 
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